Adaptation of faecal microbiota in sows after diet changes and consequences for in vitro fermentation capacity.

نویسندگان

  • M A Sappok
  • O Peréz Gutiérrez
  • H Smidt
  • W F Pellikaan
  • M W A Verstegen
  • G Bosch
  • W H Hendriks
چکیده

In vitro gas production studies are routinely used to assess the metabolic capacity of intestinal microbiota to ferment dietary fibre sources. The faecal inocula used during the in vitro gas production procedure are most often obtained from animals adapted to a certain diet. The present study was designed to assess whether 19 days of adaptation to a diet are sufficient for faecal inocula of pigs to reach a stable microbial composition and activity as determined by in vitro gas production. Eighteen multiparous sows were allotted to one of two treatments for three weeks: a diet high in fibre (H) or a diet low in fibre (L). After this 3-week period, the H group was transferred to the low fibre diet (HL-treatment) while the L group was transferred to the diet high in fibre (LH-treatment). Faecal samples were collected from each sow at 1, 4, 7, 10, 13, 16 and 19 days after the diet change and prepared as inoculum used for incubation with three contrasting fermentable substrates: oligofructose, soya pectin and cellulose. In addition, inocula were characterised using a phylogenetic microarray targeting the pig gastrointestinal tract microbiota. Time after diet change had an effect (P<0.05) on total gas production for the medium-fast fermentable substrates; soya pectin and oligofructose. For the more slowly fermentable cellulose, all measured fermentation parameters were consistently higher (P<0.05) for animals in the HL-treatment. Diet changes led to significant changes in relative abundance of specific bacteria, especially for members of the Bacteroidetes and Bacilli, which, respectively, increased or decreased for the LH-treatment, while changes were opposite for the HL-treatment. Changing the diet of sows led to changes in fermentation activity of the faecal microbiota and in composition of the microbiota over time. Adaptation of the microbiota as assessed by gas production occurred faster for LH-animals for fast fermentable substrates compared with HL-animals. Overall, adaptation of the large intestinal microbiota of sows as a result of ingestion of low and high fibre diets seems to take longer than 19 days, especially for the ability to ferment slowly fermentable substrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The response of canine faecal microbiota to increased dietary protein is influenced by body condition

BACKGROUND High protein diets shift the faecal microbiota into a more unfavourable composition in obese humans. In lean dogs, higher protein consumption is accompanied with increased production of putrefactive fermentation products, whereas obese dogs have a different gut microbiota compared to lean dogs. Still, the impact of high dietary protein on gut microbiota in obese dogs remains unclear....

متن کامل

Effects of Surgical and Dietary Weight Loss Therapy for Obesity on Gut Microbiota Composition and Nutrient Absorption

Evidence suggests a correlation between the gut microbiota composition and weight loss caused by caloric restriction. Laparoscopic sleeve gastrectomy (LSG), a surgical intervention for obesity, is classified as predominantly restrictive procedure. In this study we investigated functional weight loss mechanisms with regard to gut microbial changes and energy harvest induced by LSG and a very low...

متن کامل

A randomised crossover study investigating the effects of galacto-oligosaccharides on the faecal microbiota in men and women over 50 years of age.

Faecal microbial changes associated with ageing include reduced bifidobacteria numbers. These changes coincide with an increased risk of disease development. Prebiotics have been observed to increase bifidobacteria numbers within humans. The present study aimed to determine if prebiotic galacto-oligosaccharides (GOS) could benefit a population of men and women of 50 years and above, through mod...

متن کامل

Human gut microbiota does not ferment erythritol.

Erythritol, a naturally occurring polyol, is gaining attention as a bulk sweetener for human nutrition. Industrially, it is produced from glucose by fermentation. From various studies it is known to be non-cariogenic. Moreover, it is rapidly absorbed in the small intestine and quantitatively excreted in the urine. Only about 10 % enters the colon. Earlier in vitro experiments showed that erythr...

متن کامل

Starch-entrapped microspheres show a beneficial fermentation profile and decrease in potentially harmful bacteria during in vitro fermentation in faecal microbiota obtained from patients with inflammatory bowel disease.

The purpose of this research was to test the hypothesis that starch-entrapped microspheres would produce favourable fermentation profiles and microbial shifts during in vitro fermentation with the faecal microbiota from patients with inflammatory bowel disease (IBD). In vitro fermentation was carried out using a validated, dynamic, computer-controlled model of the human colon (Toegepast Natuurw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Animal : an international journal of animal bioscience

دوره 9 9  شماره 

صفحات  -

تاریخ انتشار 2015